S3A TOPICAL INTENSIVE REVISION WEEK 1

Total Marks: 30

Topic: Equations and Inequalities

- Express $y = 3x^2 6x + 11$ in the form $y = a(x+h)^2 + k$, where a, h and k are constants.
 - (ii) State the minimum value of y and the corresponding value of x. [2]
 - (iii) Sketch the graph $y = 3x^2 6x + 11$ showing clearly the coordinates of the minimum point of the curve and y-intercept. [3]
- 2 (i) Find the range of values of x for which $x(10-x) \ge 24$. [2]
 - (ii) Find the value of k for which the line 2y + x = k is a tangent to the curve $y^2 + 4x = 20$.
 - (iii) Show that the equation $x^2 + (2a-2)x + (2a-3) = 0$ has real roots for all real values of a.
- 3 Find the range of values of c for which $3x^2 + cx + 7 > 4$. [4]
- 4 (i) Find the range of values of p for which the line y = x 2p does not intersect [4] the curve $x^2 = 3y 1$.
 - (ii) Hence state the value of p for which the line y = x 2p is tangent to the curve $x^2 = 3y 1$.
- 5 (i) Solve the simultaneous equations. [5] x = 1+2y x = 6xy-2y-3
 - (ii) Explain the geometrical meaning of this solution. [1]

S3A TOPICAL INTENSIVE REVISION WEEK 1

Answer Key

1(i)	$y = 3(x-1)^2 + 8$
1(ii)	Minimum value of $y = 8$
	Corresponding $x = 1$
1(iii)	Sketch Graph
2(i)	-2 ≤ <i>x</i> ≤ 12
2(ii)	k = 9
2(iii)	The equations has real roots
3	-6 < <i>c</i> < 6
4(i)	$p > \frac{5}{24}$
4(ii)	$p = \frac{5}{24}$
5(i)	$x = -\frac{1}{3}, y = -\frac{2}{3}$ $x = 2, y = \frac{1}{2}$
5(ii)	The line intersects the curve at the points $\left(2, \frac{1}{2}\right)$ and $\left(-\frac{1}{3}, -\frac{2}{3}\right)$