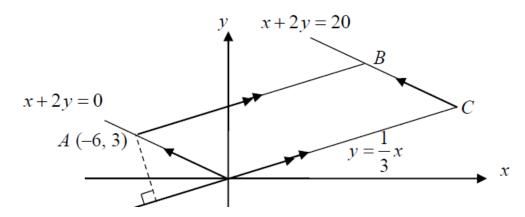

Total Marks: 65

Topic: Coordinate Geometry & Circles

- 1. The diagram, which is not drawn to scale, shows a trapezium PQRS in which PQ is parallel to SR. The point P lies on the y-axis and the point Q is (7,9). The point T(6,7) lies on PR such that QT is perpendicular to PR and $QS = 3 \ QT$.
 - (i) Find the equation PR. [2]
 - (ii) Hence, write down the coordinates of P. [1]
 - (iii) Find the coordinates of V if PQRV is a kite. [2]
 - (iv) Show that the coordinates of S are (4,3). [2]
 - (v) Find the coordinates of R if the area of PQRS is 67.5 square units. [3]



- 2. The diagram shows a parallelogram OABC, where O is the origin and A is the point (-6,3). The equation of OA, OC and BC are x+2y, $y=\frac{1}{3}x$ and x+2y=20 respectively.
 - (a) Find the coordinates of C and of B. [4]

The perpendicular from A to OC meets CO produced at the point F.

- (b) Find the coordinates of F. [3]
- (c) Calculate the exact length of AF and hence find the area of the parallelogram OABC.

- 3. The points P (-2,-6), Q(2,-8) and R(6,0) lie on a circle.
 - (i) Show that PR is a diameter of the circle. [3]
 - (ii) Find the equation of the circle. [3]
 - (iii) Find the possible equations of tangent to the circle which is parallel to the x -axis. [2]
 - (iv) Find the equation of the perpendicular bisector of QR and show that it passes through the centre of the circle. [3]

- 4. The equation of a circle C_1 is $x^2 + y^2 14x + 2y + 46 = 0$
 - (i) Find the radius of circle C_1 and the coordinates of its centre. [4]

Circle C_1 is reflected about the line x = 4 to form another circle C_2 with centre M.

(ii) Find the coordinates of M.

[1]

(iii) Find equation of circle C_2 .

[1]

A line, l passing through M, forms an angle θ with the positive x-axis such that $\tan\theta=1$

(iv) Find equation of line l.

[1]

The tangent to circle C_1 at the point (8.2, 0.6) meets line l at Q.

(v) Find the coordinates of Q.

[5]

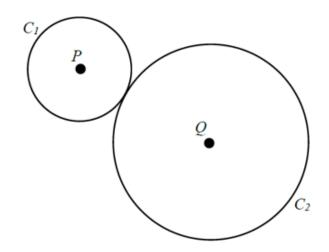
- 5. A circle, C_1 , passes through the points A(0,9) and B(-3,0). Its centre, C_1 , lies on the line y=x+8.
 - (a)(i) Show that the centre of the circle, C_1 is (-3,5)

[4]

(ii) Hence find the equation the circle C_1 .

[2]

- (b) A second circle, C_2 , with the equation $x^2 + y^2 + ax + by 2 = 0$, has the same centre, C as circle C_1 .
 - (i) Find the value of a and of b.


[2]

(ii) Explain why the circle C_2 lies outside of the circle C_1 .

[3]

- 6. A circle C_1 is given by the equation $x^2 + y^2 + 10x 6y + 9 = 0$. Another circle C_2 with the centre Q(7, -2) touches the circle C_1 externally as shown in the diagram below.
 - (i) Find the coordinates of the centre P and of the radius of circle C_1 . [3]
 - (ii) Show that the equation of circle C_2 is $(x-7)^2+(y+2)^2=64$. [2] It is given that the equation of the tangent to the circle C_1 at the point R is 3y+4x=k.
 - (iii) Given that the point R lies to the left of centre P, find the value of the constant k. [6]

Answer Key

	<u>,</u>
1(i).	$y = -\frac{1}{2}x + 10$
1(ii).	P(0,10)
1(iii).	V(5,5)
1(v).	R(18,1)
2(a).	C(12,4), B(6,7)
2(b).	F(-4.5, -1.5)
2(c).	$\frac{3}{2}\sqrt{10}$, 60
3(ii).	$(x-2)^2 + (y+3)^2 = 25$
3(iii).	y = 2, y = -8
3(iv).	$y = -\frac{1}{2}x - 2$
4(i).	(7, −1), 2 units
4(ii).	M(1,-1)
4(iii).	$x^2 + y^2 - 2x + 2y - 2 = 0$
4(iv).	y = x - 2
4(v).	Q(5,3)
5(aii).	$(x+3)^2 + (y-5)^2 = 25$
5(bi).	a = 6, b = -10
5(ii).	Since the radius of C_2 is longer that of C_1 , circle C_2
	lies outside of the circle \mathcal{C}_1 .
6(i).	P(-5,3), r = 5
6(iii).	k = -36