S3A TOPICAL INTENSIVE REVISION WEEK 4

Total Marks: 30

Topic: Exponential

- 1 (a) Solve the equation $3^{2x+2} 10(3^x) + 1 = 0$. [4]
 - (b) Without using a calculator, evaluate 15^x given that $3^{2x-1} \times 5^{4-x} = 3^{x+3} \times 5^{3-2x}$.
- 2 Solve

(a)
$$9^x + 2(3^x) = 3^{x+2} - 12$$
, [4]

(b)
$$e^x = 5 + 6e^{-x}$$
. [3]

- 3 Given that $\frac{9^{n+2}-3^{2n+2}}{2^5}=2^a3^b$, where a and b are integers,
 - (i) find the value of a and express b in terms of n, [5]
 - (ii) hence, or otherwise, solve the equation $\frac{9^{n+2} 3^{2n+2}}{2^5} = \frac{1}{4}.$
- 4 Prove that $2^x + \frac{1}{2}(2^{x+4}) 2^{x+2}$, where x is a positive integer, is exactly divisible by 5.
- The quantity, N, of a particle decaying is given by $N = 3500 + 2000e^{-0.04t}$ where t is the time in years after the particle starts decaying.
 - (i) Find the quantity of the particle at which the particle has not started [1] decaying.
 - (ii) Find the quantity of the particle when t = 14. [1]
 - (iii) Express t in terms of N. [3]
 - (iv) Explain why the quantity of the particle can never reach 3500. [1]

Answer Key

1(a)	x = -2, 0
1(b)	<u>81</u> 5
2(a)	x = 1, 1.26
2(b)	1.79
3(i)	a = -2, $b = 2n + 2$
3(ii)	n=-1
4	$(2^{x})(5)$ is a multiple of 5, hence divisible by 5.
5(i)	5500
5(ii)	4640
5(iii)	$t = -25 \ln \left(\frac{N - 3500}{2000} \right)$
5(iv)	As $t \to \infty$, $2000e^{-0.04t} \to 0$, $3500 + 2000e^{-0.04t} \to 3500$