## **S3A TOPICAL INTENSIVE REVISION WEEK 5**

Total Marks: 30

## Topic: Logarithm

- 1 Given that  $u = \log_3 z$ , find, in terms of u,
  - (a)  $\log_z 9z$ , [1]
  - (b)  $\log_3\left(\frac{z}{27}\right)$ , [1]
  - (c)  $\log_{z} 27$ . [2]
- 2 Solve
  - (a)  $\log_2(3x-5)+3=\log_2(4x+5)$ , [3]
  - (b)  $2\log_3 y \log_y 27 = 1$ . [5]
- 3 Solve  $2\log_7 p = 3 + \log_p 49$ . [5]
- 4 Express  $2\log_5 x \log_5 (x 6) = 1$  as a quadratic equation in x and explain why there are no real solutions. [5]
- The mass, m grams, of a radioactive substance, present at time t years after being observed, is given by the formula  $m = 195(0.8)^t$ .
  - (i) Find
    - (a) the initial mass of the substance, [1]
    - (b) the mass of the substance when t = 6, [1]
    - (c) the value of t when the mass of the substance is  $\frac{1}{4}$  of its initial mass. [4]

Give your answer correct to three significant figures.

- (ii) Explain why the mass of the substance can never be more than 195. [1]
- (iii) Sketch the graph of m against t, where t > 0. [1]

## Answer Key

| 1(a)    | 2+ <i>u</i>                                              |
|---------|----------------------------------------------------------|
| 1(b)    | u – 3                                                    |
| 1(c)    | $\frac{3}{u}$                                            |
| 2(a)    | $x = 2\frac{1}{4}$                                       |
| 2(b)    | $y=3\sqrt{3},\frac{1}{3}$                                |
| 3       | p=0.378, 49                                              |
| 4       | $x^2 - 5x + 30 = 0$                                      |
| 5(i)(a) | 195 g                                                    |
| 5(i)(b) | 51.1 g                                                   |
| 5(i)(c) | 6.21 years                                               |
| 5(ii)   | As $t \to \infty$<br>$0.8^t \to 0$<br>$195(0.8^t) \to 0$ |
| 5(iii)  | Sketch graph                                             |