

S4A TOPICAL INTENSIVE REVISION WEEK 5

Topic: TRIGONOMETRY

Total marks: 43

1. Given that $sin A = -\frac{3}{5}$, $cos B = \frac{5}{6}$ and both angle A and angle B are in the same quadrant, find the exact value of

(i)
$$cos(A-B)$$
 [3]

(ii)
$$sin \frac{B}{2}$$
 [2]

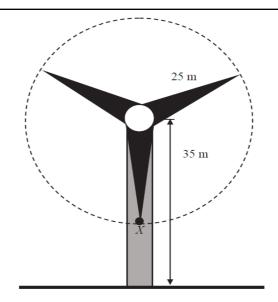
- 2. (i) Prove the identity $\cot x \sin 2x = \cot x \cos 2x$. [3]
 - (ii) Hence, solve the equation $4 \cot x 4 \sin 2x = \cos 2x$ for $0 \le x \le \pi$ [4]
- 3. (i) Show that $sin(x 30^\circ) = -cos(x + 60^\circ)$ [3]
 - (iii) Hence, find the values of xbetween 0° and 360° for which $4\sin(x-30^{\circ}) + \cos(x+60^{\circ}) = 1.$ [4]
 - (iii) Given that $sin(x 30^\circ) = \frac{1}{2} (\sqrt{3} sin x cos x)$, use it to find the exact value of $sin 15^\circ$.
- 4. (a) Factorise $a^3 + b^3$. [1]

(b) Show that
$$\frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} = 1 - \frac{\sin 2x}{2}.$$
 [2]

(c) Hence, solve the equation
$$\frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} = 1 - \sin^2 2x$$
 for $0 \le x \le \pi$ [5]

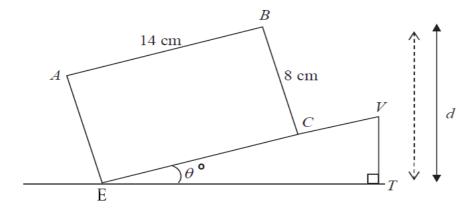
5. The diagram shows a wind turbine with blade 25m in length. The centre of the wind turbine is 35m from the ground. The height, h m, of the tip of a particular blade above the ground t seconds after leaving X can be modelled by $h = a \cos bt + c$, where c is a constant. The blades of the wind turbine rotate at a speed of 1 revolution for every 3π seconds.

S4A TOPICAL INTENSIVE REVISION WEEK 5



(a) Find the values of a, b and c.

- [3]
- (b) Hence, sketch the graph for $h = a \cos bt + c$ for $0 < t < 6\pi$. [2]
- (c) Find how long it would take for the blade to first be 42m above the ground after leaving X. [3]
- 6. The diagram shows the front view of a rectangular block ABCE, with dimensions 14cm by 8cm, placed on a ramp, VE, tilted at an acute angle of θ° and angle $\angle VTE = 90^{\circ}$. The ramp is placed on a horizontal surface ET and d is the perpendicular distance from B to ET.
 - (a) Show that $d = 14 \sin \theta + 8 \cos \theta$. [2]
 - (b) Express d in the form $R \sin(\theta + \alpha)$, where R > 0, and $0^{\circ} \le \alpha \le 90^{\circ}$. [3]
 - (c) State the maximum value of d and find the corresponding value of θ . [2]
 - (d) Find the smallest value of θ such that d=13.



Answer Key

1(i)	$\frac{20+3\sqrt{11}}{30}$
1(ii)	$\frac{\sqrt{3}}{6}$
2(i)	-
2(ii)	$\frac{\pi}{4}$, $\frac{3\pi}{4}$, 1.33
3(ii)	49.5°, 190.5°
3(iii)	$\frac{1}{4}(\sqrt{6}-\sqrt{2})$
4(a)	$(a+b)(a^2-ab+b^2)$
4(b)	-
4(c)	$0, \frac{\pi}{2}, \pi \text{ or } \frac{\pi}{12}, \frac{5\pi}{12}$
5(a)	$a = -25, b = \frac{2}{3}, c = 35$
5(b)	Graph
5(c)	t = 2.78 s
6(a)	-
6(b)	$d = 2\sqrt{65}\sin(\theta + 29.7^\circ)$
6(c)	2√65 ,60.3°
6(d)	24.0°