S4A TOPICAL INTENSIVE REVISION WEEK 8

Total marks: 48

Topic: KINEMATICS & APPLICATIONS

1. Two points A and B are on a straight line where AB = 6 m. A particle P moves along the line so that its velocity, v ms⁻¹, is given by $v = 2t^2 - 7t - 4$, where t is the time in seconds after leaving B. Initially P is at B, moving towards A.

- a) Find an expression, in terms of t for the acceleration of P. [1]
- b) Find the minimum velocity of *P*. [3]
- c) Find an expression, in terms of t for the distance of P from A. [2]
- d) Find the distance from A of the point where P comes instantaneously to rest [3]
- e) Find the total distance travelled by *P* in the first 6 seconds. [3]
- 2. The velocity, v ms⁻¹, of a particle travelling in a straight line at time t seconds after leaving a fixed point 0 is given by $v = 2t^2 + (2 3k)t + 4k 5$, where k is a constant.
 - a) Given that the minimum velocity occurs at $t = \frac{13}{4}$, show that the value of k = 5. [3]
 - b) Find the time(s) the particle comes to instantaneous rest. [2]
 - c) Find the distance travelled in the first 7 seconds after passing through 0. [4]
 - d) Given that R is the point when the particle has zero acceleration, and P is the point where the particle first comes to rest, determine, with full working whether R is nearer to O or nearer to P. [3]

S4A TOPICAL INTENSIVE REVISION WEEK 8

3. In the diagram, GED is the diameter of circle GBD, and ED is the diameter of circle ECD. AGF is a tangent to circle GBD at G.

ABCD and CEF are straight lines and GE = EC.

- a) Prove that triangle *DBG* is similar to triangle *DCE*. [2]
- b) Prove that GF = CD. [3]
- c) Prove that the triangle ABG is similar to triangle EGF. [2]

4. In the diagram, A, B and C are the midpoints of PR, PQ and QR respectively. PR and PQ are tangents to the circle at A and B respectively. EF and EG are perpendiculars from E to PR and AB respectively.

- a) Prove that PACB is a parallelogram.
- b) Prove that $EF \times BE = EG \times AE$.

[2] []

S4A TOPICAL INTENSIVE REVISION WEEK 8

Answer Key

1(a)	a = 4t - 7
1(b)	$v = -10\frac{1}{8} \mathrm{m/s}$
1(c)	$s = \frac{2}{3}t^3 - \frac{7}{2}t^2 - 4t + 6$
1(d)	$23\frac{1}{3}$ m
1(e)	$52\frac{2}{3}$ m
2(a)	-
2(b)	1.5s or 5s
2(c)	43.75 m
2(d)	$\mathit{OR} = 2.98~\mathrm{m}$, $\mathit{PR} = 7.15~\mathrm{m}$, nearer to O